А.П.Швечикова А.И.Дупенко

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ВОДНОГО РЕЖИМА НЕКОТОРЫХ ДРЕВЕСНО-КУСТАРНИКОВЫХ ПОРОД В УСЛОВИЯХ МЕРГЕЛЕВОГО СКЛОНА

Одним из методов защиты склоновых земель юго-востока Украины является создание фитомелиоретивных насаждений из засухоустойчивых пород деревьев и кустарииков.

E 4 4 4 4

Земли Ворошеловградской области, как и всего Донецкого бассейна, подвергаются активному действию ветровой и водной эрозии, поэтому подбор ассортимента кустарниковых и древесных пород с целью облесения пологих силонов и неудобий имеет большое практическое значение. Деревыя и кустарники, высаженные по смытым силонам с выходом
карбонатных пород (известняков, мела, мергелей), попадают в жесткие
условия водного и температурного режимов, в которых могут выжить тольно засухоустойчивые породы деревьев и кустарников. Очевидно, при
подборе рестений-фитомалиорантов необходимо учитывать не только устойчивость растений к высокому содержению нарбонатов, нетребовательность к почвенному плодородию, но и степень засухоустойчивости растений.

Поназателем засухоустойчивости, нак известно, может служить способность растения регулировать водообмен в условиях недостаточной водообеспеченности (Генкель, 1960). С этой целью изучение некоторых показателей волного режима превесно-кустарниковых пород, обычно применяемых для фитомелиорации эролированных земель в степной зоне. Наблюдения проводились в течение трех лет (1977-1979) в приовражной мелиоративной лесополосе на одновозрастных пятелетних саженцах акации белой, лоха сереористого, леного, вишни войдочной и скумпии. Мы изучали содержение общей воды, интенсивность транспирации и водоудерживающую способность растений. Определение этих показателей проводилось в различные сроки вегетационного периода. Содержение общей воды определялось методом высушивания до постоянкого веса, интенсивность транспирации - методом Иванова, водоудерживающая способность - методом завядания. Средние показатели общего содержания воды в листьях исследуемых растений приведены в табл. І.

Таблица I Изменение содержания общей воды в листьях в течение вегетационного порядода

Породы деревьев	Содержение воды в % в сырому весу			
и нустарников	2.17	6.УП	7.IX	
вация белая	73,0	73,9	57,7	
Сень зеленый	75,0	69,7	56,6	
Лох серебристый	70,4	71,8	54,I	
Вишня войлочная	60,2	60,3	56,9	
Скумпия	66,3	67,2	58,0	

Из таблицы видно, что содержение общей воды в листьях исследуемых растений довольно високое и колеблется, заметно уменьшаясь к
концу вегетационного периода. Особенно заметна разница в содержении
воды в июле и сентябре, в то время как различия между этими № 3038—
телями в июне и июле незначительны. Такое состояние уровня водообеспеченности в июле и сентябре, возможно объясняется не только уменьшением влагозапасов в почве, но и возрастными изменениями. Среди исследуемых растений наибольшая оводненность свойственна акации белой,
ясеню зеленому и лоху серебристому. Наименьшее содержение общей воды
отмечается у вишни войлочной, а скумпия занимает по этому показателю
среднее положение. Вместе с тем у первых трех видов за период наблюдений отмечается наибольшее колебение содержения общей воды, составлявщее 15,3%, у акации белой, 19,0% у ясеня зеленого и 16,3% у лоха
серебристого.

Разница в содержении свободной воды в иоле и сентябре у вишни войлочной и скумпии была значительно меньше и составляла соответственно 3,3% и 8,3%. Вишня войлочная и скумпия при меньшей общей оводненности характеризуются бслышей стабильностью ее. Возможно, это обусловливается сравнительно низкой интенсивностью транспирации (табл.2) и довольно высокой водоудерживающей способностью цитоплазмы илеток их растений (табл.3).

Анализ данных интенсивности транспирации, приведенных в табл.2, показывает, что исследуемые растения существенно отличаются по интенсивности транспирации. Акация белая, ясень зеленый в ионе имели довольно высокую интенсивность транспирации, составляющую от 0.60 - 0.86 г/лм в час. А у остальных видов она была почти в два раза ниже. В иоле с нарастанием дневных температур и повышением

сухости воздуха все растения снизили транспирацию. Так у вишни войлочной и ложа серебристого она уменьшилась соответственно на 0,19 и 0,18 г/дм² час и только у скумпии практически не изменилась. К концу вегетеции четкой закономерности в изменении интенсивности транспирации отметить не удалось.

Таблица 2 Интенсивность транспирации листьев, г/дм² час

Породы деревьев	Интенсивность транспирации г/дм час			
и кустарников	ABOIN	Июль	Сентябрь	
Акация белая	0,86	0,63	0,48	
Ясень зеленый	0,60	0,67	0,94	
Скумпея	0,49	0,53	0,77	
Вишня войлочная	0,43	0,24	0,57	
Лох серебристый	0,41	0,23	0,43	

Таблица З
Водоудерживающая способность листьев деревьев и кустарников
в течение вегетации

Породы	Потеря воды в % от общего содержения					
	3a 30	Se I Tac	За 30 мин.	Sa I yac	За 30 мин	За І час
Анация белая	16,9	28,7	33,8	67,I	13,7	22,I
Н сень зеленый	12,7	18,4	38,5	61,5	41,6	58,4
Скумпия	20,2	25,2	12,4	18,5	17,7	23,0
Вишня войлючная	9,4	14,8	25,4	37,7	32,I	43,8
Лож серебристый	14,7	19,1	12,1	18,0	22,9	27,6

В сентябре у акации белой интенсивность транспирации еще сильнее уменьшилась, а у всех остальных видов наблюдалось повышение ее по сревнению с июлем. Особенно значительно повысилась она у ясеня зеленого (на 0,54 г/дм² час). Снижение интенсивности транспирации у исследуемых растений в жаркий период (июле) свидетельствует о способности этих растений быстро реагировать на ухудшение услови водоснабжения. Повышение интенсивности транспирации в осенний период объясняется, видимо, увеличением влажности воздуха и почвы после выпавших осенних осадков.

Высокая интенсивность транспирации у акации белой и ясеня зе-

деного связана с довольно низкой водоудерживающей способностью колдоидов цитоплазмы клеток этих растений на протяжении всего вегетационного периода (табл.3). У остальных растений водоудерживающая
способность заметно выше, их листья теряли меньше влаги не только в
первые часы обезвоживания, но и после длительного обезвоживания. Наблюдения за динамикой водоудерживающей способности у опытных растевий показали, что у ясеня зеленого происходит устойчивое снижение
водоудерживающих сил коллондов цитоплазмы и концу вегетационного периода. В конце вегетационного периода заметно снижеется водоудерживающая способность и у вишни войлочной, но только в первые часы обезвоживания. Длительное завядание приводит примерно и такой же потере
воды клетками этого растения, как и в июне. По-видимому, глубокому
обезвоживанию в данном случае препятствует включение водоудерживаюших сил коллондных систем цитоплазмы (Тусев, 1966).

Снижение водоудерживающей способности цитоплазмы илетои ясеня зеленого и вишни войлочной и концу вегетационного перчода указывает на перегруппировку форм воды в связи с возрастными изменениями, фракции воды, удерживаемые средними силами, переходят в фракцию свободной воды, которую растение легко теряет при обезвоживании. У остальных растений в конце вегетационного периода водоудерживающая способность цитоплазмы возрастает, что особенно заметно по результатам длительного завядания. Высокие значения водоудерживающей способности у лоха серебристого и скумпии сохраняются и в самый жаркий период вегетации, в июль. Это объясняется, по-видимому, высоким содержанием коллоидно-связанной воды в цитоплазме клеток растений (Алексеев,

Таким образом, из приведенного анализа особенностей водного режима видно, что все исследуемые растения, за исключением ясеня зеленого, можно отнести и растениям, способным регулировать свой водомен в условиях недостаточного водообеспечения. Так, высокая оводенность и высокая транспирация 0,86 г/дм час при низкой водоудерживающей способности позволяют предположить, что такой интенсивный водообмен их обеспечивается мощно развитой корневой системой, обусловливающей бесперебойную подачу воды ко всем органам растения (Лир и др., 1971). Достаточно высокая оводненность листьев лоха серебристого сохраняется в связи с уменьшением интенсивности транспирации (0,23 г/дм час) и увеличением водоудерживающей способности (56,9 - 75,3%). Сходными по показателям водного режима оказальсь вишня войлочная и скумпия. Значительная оводненность листьев у скумпии удерживающей способности, а у вишни

войлочной за счет более низной интенсивности транспирации. Менее приспособленным для произрастания на мергелевых силонах следует признать ясень зеленый, так нак высокая интенсивность транспирации (0,60 г/дм² час) при низной водоудерживающей способности (92,1%) приводит и быстрому обезвеживанию растений.

Следовательно, для создания противоэрозионных лесных полос на мергелевых силонах Ворошиловградской области из исследуемых видов растений можно рекомендовать анацию белую, лох серебристый, вишню войлочную и снумпию.

Литература

Алексеев А.М. Основные представления о водном режиме растений и его поназателях. В кн.: Водный режим сельскохозяйственных растений. М., 1969.

Геннель П.А. Современное состояние проблемы засухоустойчивости растений и дальнейшие пути ее изучения. — В ин.: Физиология устой-чивости. М., 1960.

Гусев Н.А. Физиология водообмена растений. - Казань, изд.Казанского ун-та. 1966.

X.Лир, Г.Польстер, Г.Фидлер. Физиология древесных растений. М.: Лесная промышленность, 1974.